A Second-order Space and Time Nodal Method for the One-dimensional Convection-diffusion Equation
نویسنده
چکیده
Abstract---We present a nodal integral method for the one-dimensional convection-diffusion equation. The development is carried out in the nodal spirit, and results in a method that is second order both in space and time variables. Extension of this method, which is characterized by inherent upwinding, to multi-dimensional problems is straightforward. The nodal method’s ability to yield accurate results on rather coarse mesh sizes when coupled with node interior reconstruction of the solution results in a rather powerful r;cheme that can accurately resolve the solution--even in regions with sharp gradients-with relatively large node sizes. Three widely used problems are solved numerically to demonstrate the properties of the nodal method developed here.
منابع مشابه
An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملA Fourth-Order Compact Finite Difference Scheme for Solving Unsteady Convection-Diffusion Equations
Convection-diffusion equations are widely used for modeling and simulations of various complex phenomena in science and engineering (Hundsdorfer & Verwer, 2003; Morton, 1996). Since for most application problems it is impossible to solve convection-diffusion equations analytically, efficient numerical algorithms are becoming increasingly important to numerical simulations involving convection-d...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملOptimal control of diffusion-convection-reaction processes using reduced-order models
Two approaches for optimal control of diffusion-convection-reaction processes based on reduced-order models are presented. The approaches differ in the way spatial discretization is carried out to compute a reduced-order model suitable for controller design. In the first approach, the partial differential equation (PDE) that describes the process is first discretized in space and time using the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003